AP Biology Student Learning Plan Ecology Unit 2 - 16 Days Math skills: Population growth, logistic growth curves

Day/Date	Topic/Objectives	Support
Day 1	How do living organisms respond to seasonal changes?	
Introduction		
Homeostasis	Describe the role of photosynthetic, chemosynthetic and	
	heterotrophic organisms in an ecosystem	
	Explain how factors in an ecosystem impact homeostasis and describe	
	the mechanisms that organisms have evolved to maintain equilibrium	
	Describe the interaction of biotic and abiotic factors in an ecosystem	
Day 2		56.1-3
Population	How do predators establish territory?	
dynamics	How does prey use pack behavior?	
	□ What factors limit the density of populations?	
	□ How can population interact?	
Day 3	· ·	56.4-5
Population	□ Use data to support models of human population growth	
Growth	□ What type of graph is used to represent unconstrained population	
	growth?	
	□ What type of graph is used to represent controlled population	
	growth?	
	□ What is the environmental result of unconstrained population	
	growth?	
	□ What density dependent and independent factors limit population	
	growth?	
Day 4		57.1-3
Niches and	populations?	
Relationships	How do competition, parasitism, predation and mutualism affect	
1	population dynamics?	
D f		
Day 5	8 1 1	57.4-5
Community	What reproductive strategies do living organisms use?	
Interactions	How does metabolic rate relate to size of organisms?	
	How can complex population interactions be studied?	
	What types of data are used to study human population growth?	
Day 6	0,	58.1-58.2
Biogeochemical	organisms?	
cycles	How do living organisms eliminate nitrogenous waste?	
	How does the addition of nitrogen based fertilizers affect aquatic	
	ecosystems?	
	\Box What is the primary difference between energy and matter in terms of	
	cycles?	
Day 7		58.3-4
Species	What strategies do organisms use for seasonal reproduction	
Interactions	□ What is the relationship between body size and metabolic strategies	
	\Box What are the consequences of excess free energy in an individual and	
	a population	

	What are the consequences of insufficient free energy in an individual and an population	
Day 8 Succession	 How does the distribution of ecosystems change over time What large scale events have impacted this change over time 	59.1 – 2
Day 9 Biomes	How do biotic and abiotic factors combine to define biomes at a global level?	59.3-4
Day 10 Human Impact	How do human activities accelerate ecosystem change over time?	59.5-6
Day 11 Math and modeling	How are models and simulations used to help scientists better understand complex systems?	
Day 12 Biodiversity	 How does species diversity impact ecosystems? What is the impact of newly introduced species into existing ecosystems? 	60.1-2
Day 13 Extinction	□ What impact has human activity had on species diversity over time?	60.3-4
Day 14 Earth in Crisis	How do human activities impact the homeostatic balance of the ecosystem?	
Day 15 Review		
Day 16 Test		

- Vocabulary:
 - 1. biomass
 - 2. keystone species
 - 3. primary succession
 - 4. succession
 - 5. ammonification
 - 6. Batesian mimicry
 - 7. biogeochemical cycles
 - 8. biological magnification
 - 9. carrying capacity
 - 10. character displacement
 - 11. cohort
 - 12. commensalism
 - 13. competitive exclusion
 - 14. cost of reproduction
 - 15. demography
 - 16. denitrification
 - 17. density-dependent effects
 - 18. density-independent effects
 - 19. detritivore
 - 20. endemic
 - 21. eutrophic

- 22. fecundity
- 23. food chain
- 24. food web
- 25. fundamental niche
- 26. generation time
- 27. global warming
- 28. greenhouse effect
- 29. interspecific competition
- 30. K-selected
- 31. microclimate
- 32. mortality
- 33. Mullerian mimicry
- 34. mutualism
- 35. niche
- 36. parasitism
- 37. populations
- 38. primary producers
- 39. r-selected
- 40. rain shadow effect
- 41. realized niche
- 42. secondary succession
- 43. sex ratio
- 44. sigmoidal growth curve

- 45. species diversity
- 46. survivorship
- 47. symbiosis
- 48. sympatric species
- 49. temperature-sensitive sex determination
- 50. trophic levels