Energetics Free Energy and Spontaneity

Energy takes various forms

Energy, regardless of the form, can exist in two states

potential

kinetic

Photosynthesis makes energy available to organisms

Radiant (light) energy transformed into chemical (CH₂O) energy

Energy is used for cell work

http://www.ted.com/talks/edith_widder_the_weird_and_wonderful_world_of_bioluminescence.html

In chemical rxns, energy is transferred as atoms & bonds are rearranged aka metabolism

Ex: Redox rxns

Metabolism includes anabolic rxns

energy in...

ANABOLIC REACTIONS

...complex, energy-rich molecules out

Anabolic rxns

- Rxns that build molecules
 - Ex: dehydration reactions; photosynthesis
- Require a net input of energy
 - therefore not spontaneous
 - Energy is stored in the bonds of the molecule

aka: Endergonic

Metabolism includes catabolic rxns

simpler molecules generated; energy released

Catabolic rxns

- Rxns that break down molecules
 - EX: hydrolysis reactions;
 - respiration
- Stored energy is released as bonds are broken

Anabolism & Catabolism are linked

the many building blocks for biosynthesis

Figure 3-3 Essential Cell Biology, 2/e. (© 2004 Garland Science)

Reactions for Life Reflect the Laws of Thermodynamics*

* The study of energy transformations

© 2001 Sinauer Associates, Inc.

Energy amount is constant The energy into a rxn = the energy at completion

Ex: Photosynthesis

Matter & energy are conserved

Energy form however, is not constant

Energy is transformed at every step

Second Law of Thermodynamics

- No physical process finishes with as much available, or useful, energy as it started with FREE ENERGY
- unavailable energy reflects the random kinetic energy of molecules, allowed to spread out; ENTROPY

- Often, this means that:
 - the change in energy includes transformation to heat
 - small molecules result from the break down of larger ones
 - an ordered system becomes more disordered

Entropy happens it's the Law!

QUANTIFYING ENERGY

total energy = useable energy* + unusable energy available for work random atomic motion

*point of interest for biologists

OR

useable energy = total energy - unusable energy available for work random atomic motion

This relationship can be used to determine the energy change of a rxn: exergonic or endergonic?

$$useable = \int total _ unuseable energy energ$$

As entropy increases, free energy decreases

To Know

$$AGibbs = AentHalpy - (Temp K) AiSorder$$

If G < 0, the reaction is exergonic; occurs spontaneously; disorder is increased *G is negative*

If G > 0, the reaction is endergonic; order/complexity is increased G is positive

* usually ATP -> ADP + P

Energy released Spontaneous Exergonic G is negative

Figure 8.6 (a) Exergonic reaction: energy released

Figure 8.6 (b) Endergonic reaction: energy required

$2H_2O_2 \rightarrow 2H_2O + O_2$

