

•Population Ecology

QOD

ī.

- Given the logistic growth curve shown to the left, calculate the rate of growth between hours 6 and 8
- Next calculate the rate of growth between hours 12 and 16
- Explain the differences in these figures

Population

• A group of the same species living in the same area at the same time.

Population characteristics

- <u>Density</u> •counts

 sample size estimate
 indirect indicators •mark-recapture
- <u>Dispersion</u> (patchy)
 •clumped
 •uniform
 •random

Density is individuals per unit of area

N = (number marked) x (total re-caught)number of marked recaptures

- Individuals may be counted individually
- Indirect measures
 such as nests or
 droppings may be
 counted
- The mark-recapture method is most

common

Dispersion describes spacing of organisms, there are three types:

ClumpedUniformrandom

Clumped

- Individuals collect in patches
- Patches may be around resources
- May result from mating or social behavior
- Helps defend against predators

Uniform

- Even spacing of organisms
- May result from competition for limited resources
- May result from territorial behavior pattern

Random

- Unpredictable spacing
- Rare in Nature
- No strong attraction or repulsion among organisms

Population characteristics

- <u>Density</u> of individuals per unit of area
 - counts
 - sample size estimate
 - indirect indicators
 - mark-recapture
- <u>Dispersion</u> pattern of spacing
 - random~ unpredictable, patternless spacing (a)
 - clumped~ patchy aggregation (b)
 - uniform~ even spacing (c)

(a) Clumped

Copyright @ Peerson Education, Inc., publishing as Benjamin Cummings

(c) Random

Demography

- Birthrate (natality, fecundity)
- Death rate (mortality)
- Age structure
- Survivorship curve

Demography: factors that affect growth & decline of populations

- <u>Birthrate</u> (natality, fecundity)~ # of offspring produced
- Death rate (mortality)
- <u>Age structure</u>~ relative number of individuals of each age
- <u>Survivorship curve</u>~ plot of numbers still alive at each age

Population Growth Models

- Exponential model • ZPG
- Logistic model

carrying capacity

C1999 Addison Wesley Longman, Inc.

Population limiting factors

• **Density-dependent factors**

- competition
 predation
 stress/crowding
 waste accumulation
- **Density-independent factors**

weather/climateperiodic disturbances

Population limiting factors

<u>Density-dependent</u>

factors

- competition
 predation
 stress/crowding
 waste accumulation
- <u>Density-independent</u> <u>factors</u>

weather/climateperiodic disturbances

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Population life history strategies

•<u>r-selected</u>

- Short maturation & lifespan
- Many (small) offspring; usually 1 (early) reproduction; no parental care
- High death rate

•<u>K-selected</u>

- Long maturation & lifespan
- Few (large) offspring; usually several (late) reproductions; extensive parental care
- Low death rate

Population life history "strategies"

• <u>r-selected</u> (opportunistic)

- Short maturation & lifespan
- Many (small) offspring; usually 1 (early) reproduction; no parental care
- High death rate

• K-selected (equilibrial)

- Long maturation & lifespan
- Few (large) offspring; usually several (late) reproductions; extensive parental care
- Low death rate

And Now its Your Turn

- In the time remaining, please prepare a Venn Diagram for r and k selected population strategies.
- You should include examples, definitions and pictures
- Minimum content: 5:3:5

From Your Lab Manual

RATE AND GROWTH	
Rate	dY= amount of change
dY/dt	t = time
Population Growth	B = birth rate
dN/dt=B-D	D = death rate
Exponential Growth	N = population size
$\frac{dN}{dt} = r_{\max}N$ Logistic Growth	K = carrying capacity r _{max} = maximum per capita growth rate of population
$\frac{dN}{dt} = r_{\max} N \left(\frac{K - N}{K}\right)$	

QOD

Figure 18.3 Carrying capacity.

•What factors prevent perpetual logarithmic population growth?

Population Growth Models

Exponential model (blue)

- idealized population in an unlimited environment (Jcurve);
- r-selected species (r=per capita growth rate)
- Logistic model (red)
- • carrying capacity (K): maximum population size that a particular environment can support (S-curve); K-selected species

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.