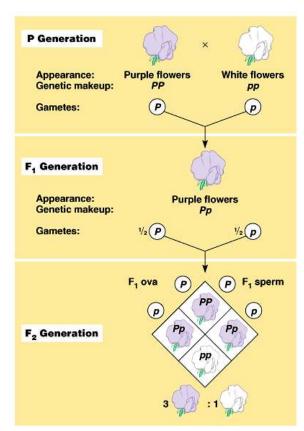


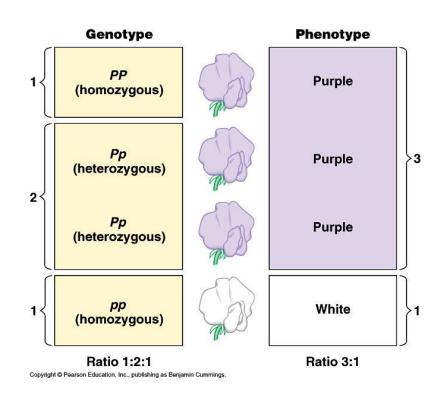
Mendel & The Gene Idea

Mendelian genetics

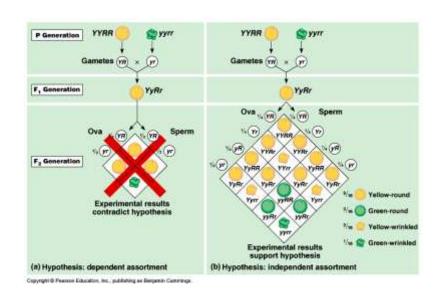

- Character (heritable feature, i.e., fur color)
- Trait (varial for a character, i.e., brown)
- True-bred (all offspring of same variety)
- Hybridization of 2 different true-breds)
- P generation (parents)
- F₁ generation (first filial generation)

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Leading to the *Law of Segregation*


- Alternative versions of genes (alleles) account for variations in inherited characteristics
- For each character, an organism inherits 2 alleles, one from each parent
- If the two alleles differ, then one, the dominant allele, is fully expressed in the organism's appearance; the other, the recessive allele, has no noticeable effect on the organism's appearance
- The alleles for each character segregate (separate) during gamete production (meiosis).
- ► Mendel's *Law of Segregation*

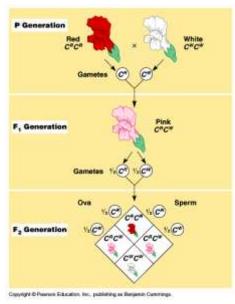
Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.


Genetic vocabulary......

- Punnett square: predicts the results of a genetic cross between individuals of known genotype
- Homozygous: pair of identical alleles for a character
- Heterozygous: two different alleles for a gene
- ► Phenotype: an organism's traits
- Genotype: an organism's genetic makeup
- Testcross: breeding of a recessive homozygote X dominate phenotype (but unknown genotype)

The Law of Independent Assortment

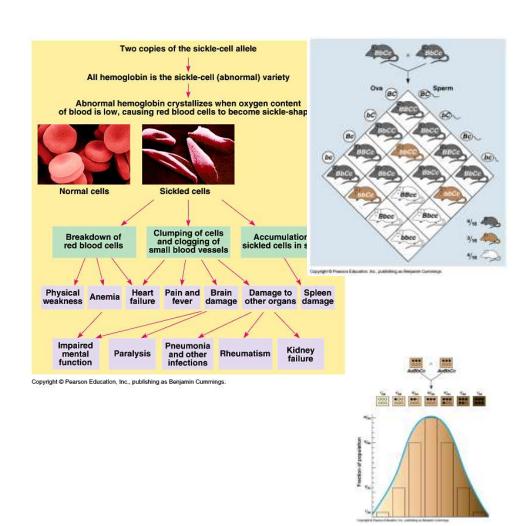
- Law of Segregation involves 1 character. What about 2 (or more) characters?
- Monohybrid cross vs. dihybrid cross
- The two pairs of alleles segregate independently of each other.
- Mendel's *Law of Independent Assortment*


Non-single gene genetics, I

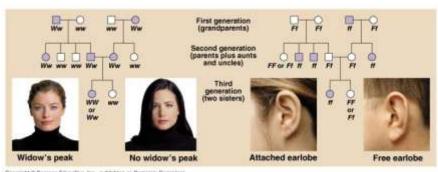
Incomplete dominance: appearance between the phenotypes of the 2 parents. Ex: snapdragons

Codominance: two alleles affect the phenotype in separate, distinguishable ways. Ex: Tay-Sachs disease

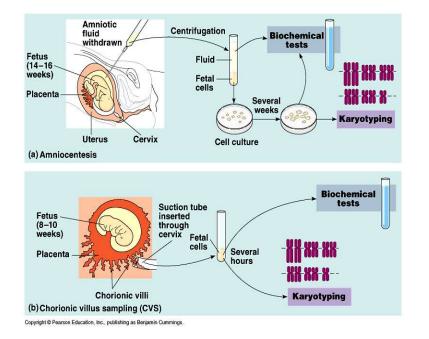
Multiple alleles: more than 2 possible alleles for a gene.


Ex: human blood types

(a) Phenotype (blood group)	(b) Genotypes (see p.258)	(c) Antibodies present in blood serum	(d) Results from adding red blood cells from groups below to serum from groups at left			
			A	В	AB	0
A	IA IA Or IA I	Anti-B		3	23	
в	18 18 or 18 1	Anti-A	3		(3)	
АВ	14 10					
o	"	Anti-A Anti-B			-	


Non-single gene genetics, II

- ► Pleiotropy: genes with multiple phenotypic effect. Fx: sickle-cell anemia
- Epistasis: a gene at one locus (chromosomal location) affects the phenotypic expression of a gene at a second locus. Ex: mice coat color
- Polygenic Inheritance: an additive effect of two or more genes on a single phenotypic character Ex: human skin pigmentation and height



Human disorders

- The family pedigree
- Recessive disorders:
 - Cystic fibrosisSachsSickle-cell
- Dominant disorders:
 - Huntington's
- Testing:
 - amniocentesis
 - chorionic villus sampling (CVS)

appright © Pearson Education, Inc., publishing as Benjumin Commings.

Pop Quiz

•In peas, green (G) is dominant to white (g). If two heterozygous plants are crossed, what is the probability of having a white offspring.